15 research outputs found

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    MOESM5 of Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans

    No full text
    Additional file 5. Genomic DNA from the A. nidulans wild-type, ΔxtrG (AN8347), ΔxtrH (AN9173), ΔcltB (AN2814) and the double ΔcltA ΔcltB strains was extracted and digested with different restriction enzymes to confirm the deletion strains. Diagram (A.) and Southern blot (B.) of the wild-type and ΔxtrG strains when digested with SacI. A 1-kb DNA fragment from the xtrG 3′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 10.0-kb band in the wild-type strain and a single 6.4-kb band in the ΔxtrG strain. Diagram (C.) and Southern blot (D.) of the wild-type and ΔxtrH strains when digested with EcoRI. A 1-kb DNA fragment from the xtrH 5′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 3.4-kb band in the wild-type strain and a single 3.0-kb band in the ΔxtrH strain. Diagram (E.) and Southern blot (F.) of the wild-type and ΔcltB strains when digested with XbaI. A 1-kb DNA fragment from the cltB 5′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 2.0-kb band in the wild-type strain and a single 3.3-kb band in the ΔcltB strain. Diagram (G.) and Southern blot (H.) of the wild-type and ΔcltA ΔcltB strains when digested with KpnI. A 1-kb DNA fragment from the cltB 3′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 2.0-kb band in the wild-type strain and a single 2.5-kb band in the ΔxtrG strain

    MOESM2 of RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose

    No full text
    Additional file 2: Figure S1. The absence of hydrophobins has minor influence on hydrolytic enzyme transcription. The transcription of cbhA and xlnA during SSF of SEB was moderately increased in the individual absence of RodA or DewC

    MOESM7 of Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei

    No full text
    Additional file 7. LOCAL ACCURACY: the divergence of the modeling represented by the distance (Ă…) between the protein designed and the template used for the construction of it. RES: residue number; SS: predicted secondary structure (C: random coil, H: alpha-helix, S: beta-strand; SA: predicted solvent accessibility at 25% cutoff (E: exposed, B: buried); COV: alignment coverage; BFP: predicted normalized B-factor; RSQ_1: Residue-Specific Quality of the template (the estimated deviation of the residue on the template from the built protein))
    corecore